Total synthesis of naamine \mathbf{C} and pyronaamidine, antitumor marine imidazole alkaloids

Seikou Nakamura, Ikuo Kawasaki, Miki Kunimura, Miyuki Matsui, Yoko Noma, Masayuki Yamashita and Shunsaku Ohta *

Kyoto Pharmaceutical University, Misasagi Yamashinaku, Kyoto 607-8414, Japan.
E-mail: sohta@mb.kyoto-phu.ac.jp
Received (in Cambridge, UK) 23rd January 2002, Accepted 6th March 2002
First published as an Advance Article on the web 19th March 2002

The first total synthesis of naamine C and pyronaamidine, highly substituted and cytotoxic imidazole marine alkaloids of a certain kind of sponge, was achieved through an eight-step reaction starting from 1-methyl-2-phenylthio-1 H -imidazole.

Introduction

Many imidazole alkaloids containing highly substituted imidazole ring(s) have been isolated from a bright yellow sponge, Leucetta chagosensis, and several of their structures are shown in Fig 1. ${ }^{1}$ These alkaloids generally have interesting biological

Naamine A (1): $\mathrm{X}^{1}=\mathrm{OH}, \mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{H}$
Naamine C (2): $\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{OMe}, \mathrm{X}^{3}=\mathrm{OH}$

Naamine B (3)

Pyronaamidine (4): $\mathrm{X}^{1}=\mathrm{OMe}, \mathrm{X}^{2}=\mathrm{OMe}, \mathrm{X}^{3}=\mathrm{OH}$
Naamidine $A(5): X^{1}=O H, X^{2}=X^{3}=H$
Naamidine B (6): $X^{1}=\mathrm{OMe}, \mathrm{X}^{2}=\mathrm{OH}, \mathrm{X}^{3}=\mathrm{H}$
Naamidine G (7): $\mathrm{X}^{1}=\mathrm{OMe}, \mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{H}$

2-Deoxy-2-amino-Kealiquinone (10): $\mathrm{X}=\mathrm{NH}_{2}$
Fig. 1
properties such as antitumor and antifungal activities. For example, it was reported that naamidine A, B and G 5-7 ${ }^{1 \text { 1a-e }}$ showed antifungal activity against Cryptococcus neoformans, and, in particular, pyronaamidine $4^{1 e}$ was cytotoxic against KB cells, minimum inhibitory concentration (MIC) $=5 \mu \mathrm{~g} \mathrm{~mL}$. . A structural characteristic of these alkaloids is that one or two alkoxybenzyl group(s) are located at the 4 and/or 5-position of the 1 -methyl 1 H -imidazole ring. So far as the alkaloids $\mathbf{4 8}$ are concerned, the 2-position of the ring is substituted with the (1-methyl-2,5-dioxo-3H-imidazolin-4-yl)amino moiety. Pyronaamidine $\mathbf{4}$ has been considered to be a possible biometabolic intermediate in the biochemical production of the tricyclic alkaloids, kealiiquinone $9^{1 e}$ and 2-deoxy-2-aminokealiiquinone 10. ${ }^{1 f}$ We have investigated the total synthesis of these imidazole natural products and already reported the first total synthesis of several marine imidazole alkaloids, $\mathbf{1},{ }^{2} \mathbf{3},{ }^{3} 5,{ }^{3} \mathbf{8}^{4}$ and $\mathbf{9} .{ }^{5}$ The most important key step in the total synthesis of $\mathbf{4}$ may be the construction of the (1-methyl-2,5-dioxo-3H-imidazolin4 -yl)amino side chain. In this paper, we report the first total synthesis of 4 through naamine C 2 .

Results and discussion

First, the preparation of the 1,2,4,5-tetrasubstituted imidazole derivative $\mathbf{1 7}$ was attempted (Scheme 1). 1-Methyl-2-phenylthio$1 H$-imidazole 11 was converted to the 5 -substituted imidazole 14 according to our previously reported method. ${ }^{5}$ When the 4position of $\mathbf{1 4}$ was lithiated by treatment with tert-butyllithium, followed by quenching with p-anisaldehyde, a diastereomeric mixture of the alcohol 15 was obtained in 43% yield. The TBDMS group was removed by treatment with TBAF. The alcohol 16 was reduced with zinc powder in conc. HCl-acetic acid at $80{ }^{\circ} \mathrm{C}$ to give not the desired $1,2,4,5$-tetrasubstituted imidazole $\mathbf{1 7}$ but a tricyclic naphthoimidazole $\mathbf{1 8}$ as a major product (yield 75%) along with many minor uncharacterized products. The structure of $\mathbf{1 8}$ was supported by a ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic study based on the data obtained in the previous investigation of the total synthesis of kealiiquinone $9 .{ }^{5}$ It could be considered that an intramolecular Friedel-Crafts type cyclization of $\mathbf{1 6}$ occurred under such acidic conditions to give $\mathbf{1 8}$. Reduction of 16 with nickel boride, ${ }^{6}$ which was used in the previous report, ${ }^{2}$ resulted unfortunately in formation of a complex mixture of many compounds such as the corresponding alcohols and deprotected phenols.

To overcome these problems, the $\mathrm{Et}_{3} \mathrm{SiH}$ reduction method ${ }^{7}$ was applied to the present system (Scheme 2). The benzyl alcohol $\mathbf{2 0}$ having a TBDMS group instead of the MOM group of

Scheme 1 Reagents: (a) lithium 2,2,6,6,-tetramethylpiperidinide (LTMP), THF, 89\%; (b) TBDMSCl, imidazole, DMF, quant; (c) NBS, THF, 64%; (d) (i) tert-BuLi THF; (ii) p-anisaldehyde, 43%; (e) TBAF, THF, quant: (f) Zn , conc. $\mathrm{HCl}, \mathrm{AcOH}, \mathbf{1 8}: 75 \%$; (g) NaBH_{4}, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, THF, MeOH , produced complex mixture.
$\mathbf{1 2}$ was prepared starting from 11 and the aldehyde $\mathbf{1 9 b}^{8}(\mathrm{R}=$ TBDMS) similarly as above. The compound $\mathbf{2 0}$ was smoothly reduced to the 5-benzylimidazole 21 in 98% yield by treatment with triethylsilane in the presence of trifluoroacetic acid according to Kobayashi's procedure. ${ }^{7}$ The 5 -benzylimidazole 21 was brominated by NBS to give the 4 -bromoimidazole $\mathbf{2 2}$ in 81% yield. When the bromide 22 was subjected to lithiation with tert-butyllithium at $-78{ }^{\circ} \mathrm{C}$ for 15 min followed by quenching with p-anisaldehyde, the required 4 -alkylated product 23 was obtained in only 15% yield along with a mixture of many minor uncharacterized products. This result might be attributable to intermediate formation of an equilibrium mixture containing the kinetic product 27 and the thermodynamic product 28 before addition of p-anisaldehyde (Scheme 3). Thus, tertbutyllithium was added into a mixed solution of 23 and p-anisaldehyde in THF at $-78^{\circ} \mathrm{C}$ in order to avoid the equilibrium, and the yield of $\mathbf{2 3}$ increased as expected, and reached 89\%.

Reductive removal of the hydroxy group of 23 with $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of TFA unfortunately resulted in formation of the tricyclic imidazole derivative 26 in 79% yield instead of the desired reductant 24 because intramolecular Friedel-Crafts type cyclization of $\mathbf{2 3}$ occurred under such acidic conditions. On the other hand, reduction of $\mathbf{2 3}$ with nickel boride ${ }^{6}$ gave successfully the 2 -unsubstituted 4,5 -dibenzylimidazole 25 in 62% yield. The structure of 25 was supported by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and other analytical data (Scheme 2).

The imidazole 25 was brominated by NBS to give the 2-bromoimidazole 29, which was subjected to lithiation with tert-butyllithium followed by treatment with trisyl azide ${ }^{9} \dagger$ to afford the 2 -azido 30 in 46% overall yield from 25 . The TBDMS

[^0]

23

26
$$
\text { 25: } \mathrm{R}^{1}=\mathrm{H}
$$
$$
\text { (24: } \left.R^{1}=S P h\right)
$$

Scheme 2 Reagents: (a) LTMP, THF, 78%; (b) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, \mathrm{DCM}$, 98%; (c) NBS, THF, 81\%; (d) (i) tert-BuLi (2 equiv.), THF; (ii) p-anisaldehyde (5 equiv.), 15%; (e) tert- BuLi (6 equiv.), p-anisaldehyde (5 equiv.), THF, 89%; (f) $\mathrm{Et}_{3} \mathrm{SiH}$, TFA, DCM, 26: 79\%; (g) NaBH_{4}, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}, 2562 \%$.

Scheme 3 A possible equilibrium after the lithiation of 22.
group of $\mathbf{3 0}$ was removed by treatment with TBAF, and the subsequent hydrogenation over $10 \% \mathrm{Pd}-\mathrm{C}$ gave naamine C 2 in 84% yield from 30 in 2 steps. Naamine C 2 was isolated as a yellow powder, the physical and spectral data of which almost agreed with those of the natural product reported ${ }^{1 f, 10}$ (Scheme 4).

The final step was construction of the 2-(1-methyl-2,5-dioxo3 H -imidazolin-4-yl)amino moiety. We have already reported a method for the regio-selective condensation of arylamine with 1-methylparabanic acid $\ddagger \mathbf{3 2}$ for constructing the side chain, and its application to the total synthesis of clathridine 8. ${ }^{4}$ This time, naamine C 2 was treated with $\mathbf{3 2}$ in the presence of TMSCl and N, N-diisopropylethylamine according to the previous procedure ${ }^{11}$ to give successfully pyronaamidine 4 in 28% yield as yellow needles, the melting point and spectral data of which were all consistent with those of the natural product reported by Scheuer ${ }^{1 e, 12}$ (Scheme 4).
While pyrronaamidine $\mathbf{4}$ was isolated at a relatively early stage among many imidazole alkaloids of sponges, its total
\ddagger The IUPAC name for parabanic acid is imidazolidinetrione.

Scheme 4 Reagents: (a) NBS, THF, 59%; (b) (i) tert-BuLi, THF, (ii) trisyl azide, 78%; (c) TBAF, THF, 87%; (d) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}, 97 \%$; (e) N, N diisopropylethylamine, $\mathrm{TMSCl}, \mathrm{CHCl}_{3}, 28 \%$.
synthesis had not been reported, and we were fortunately able to achieve the first total synthesis of $\mathbf{4}$ through $\mathbf{2}$.

Experimental

All melting points were measured with a Yanaco MP micromelting points apparatus without correction. IR was taken with a Shimadzu IR-435 spectrometer. ${ }^{1} \mathrm{H}$-NMR spectra were measured on a Varian INOBA $400 \mathrm{NB}\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$: 100.6 MHz) with tetramethylsilane as an internal standard and chemical shifts δ are reported in ppm. Abbreviations of ${ }^{1} \mathrm{H}$ NMR signal patterns are as follows: s (singlet); d (doublet); t (triplet); m (multiplet). Mass spectra (MS) and high-resonance MS (HRMS) were obtained on a JEOL JMS BU-20 spectrometer under EI ionizing conditions. Silica gel (Merck Art. 7734) was used for column chromatography.

5-[1-(tert-Butyldimethylsiloxy)-1-(3,4-dimethoxy-2-methoxy-methoxyphenyl)methyl]-4-[1-hydroxy-1-(4-methoxyphenyl)-methyl]-1-methyl-2-phenylthio-1 H -imidazole (15)

A solution of tert-BuLi in n-pentane ($1.51 \mathrm{M} ; 0.44 \mathrm{~mL}$, $0.66 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 4}^{5}(200 \mathrm{mg}$, $0.33 \mathrm{mmol})$ in THF (2 mL) under an N_{2} atmosphere at $-78^{\circ} \mathrm{C}$. Stirring was continued for 1 h , then a solution of p-anisaldehyde ($0.20 \mathrm{~mL}, 1.64 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. Stirring was continued for 3 h at $-78^{\circ} \mathrm{C}$, then water (2 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography (AcOEt- n-hexane $1: 5$) on silica gel to give 15 ($95 \mathrm{mg}, 43 \%$), a diastereomeric mixture (ca. 1:1) as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 2917, 1473, 1242, 1083, $834 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH} \mathrm{H}_{3}\right),-0.07$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH} \mathrm{H}_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH} \mathrm{H}_{3}\right), 0.84\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.85$ [s, $9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.56$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.92(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=5.0 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}\right)$, $5.09\left(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}\right), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\operatorname{ArCH}(\mathrm{OH}) \mathrm{Ar}), 6.00(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \operatorname{ArCH}(\mathrm{OH}) \mathrm{Ar}), 6.28$ (s, $1 \mathrm{H}, \operatorname{ArCH}(\mathrm{OTBDMS}) \mathrm{Ar}), 6.37$ (s, 1H, $\operatorname{ArCH}(\mathrm{OTBDMS})-$ Ar), 6.67 (d, 2H, $J=8.8 \mathrm{~Hz}, ~ A r-H), 6.796(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, Ar-H), $6.802(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.03-7.38(\mathrm{~m}, 16 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H})$ [HRMS m / z Calc. for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}: M, 666.2795$. Found: M^{+}, 666.2799].

5-[1-Hydroxy-1-(3,4-dimethoxy-2-methoxymethoxyphenyl)-methyl]-4-[1-hydroxy-1-(4-methoxyphenyl)methyl]-1-methyl-2-phenylthio-1 H -imidazole (16)
A solution of TBAF in THF ($1 \mathrm{M} ; 0.14 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was
added dropwise to a solution of $\mathbf{1 5}(78 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF at room temperature. The mixture was stirred for 10 min at room temperature. Water $(0.5 \mathrm{~mL})$ was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography (AcOEt) on silica gel to give 16 ($57 \mathrm{mg}, 88 \%$), a diastereomeric mixture (ca. 1:1), as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3384,2920,1596,1450,1240,1090 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.137\left(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.141(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}\right), 5.18\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}\right), 5.94(\mathrm{~s}, 1 \mathrm{H}$, $\operatorname{ArCH}(\mathrm{OH}) \mathrm{Ar}), 6.00(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArCH}(\mathrm{OH}) \operatorname{Ar}), 6.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times$ $\operatorname{ArCH}(\mathrm{OH}) \mathrm{Ar}), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}$, $J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.82(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.09-7.41$ (m, 14H, Ar-H) [HRMS m / z Calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: M, 552.1930$. Found: M^{+}552.1933].

6,7-Dimethoxy-8-hydroxy-4-(4-methoxyphenyl)-1-methyl-1 H -naphtho[2,3-d $]$ imidazole (18)

Zn powder (114 mg) was added to a mixture of acetic acid $(0.5 \mathrm{~mL})$, conc. $\mathrm{HCl}(0.05 \mathrm{~mL})$ and $16(42 \mathrm{mg}, 0.08 \mathrm{mmol})$, and then the whole was stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was filtered through a cotton plug, and the filtrate was evaporated under reduced pressure. After addition of water $(0.5 \mathrm{~mL})$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ powder was added to basify, and the whole was extracted with AcOEt (2 mL). The organic phase was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=10: 1)$ on silica gel to give $\mathbf{1 8}(27 \mathrm{mg}, 75 \%)$ as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3484,2979,1655,1477$, $1240,1096 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArOH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.21-7.36$ (m, 5H, Ar-H), 7.59 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.94 (s, 1H, Ar-H); $\delta\left(\mathrm{CDCl}_{3}\right) 31.0,55.3,55.5,61.4,97.0,99.1,113.8$, 118.6, 125.9, 127.29, 127.32, 128.8, 129.3, 129.5, 132.1, 132.4, 132.6, 135.2, 141.6, 143.2, 150.3, 150.8, 158.9 [HRMS m / z Calc. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: M, 472.1457$. Found: $\mathrm{M}^{+}, 472.1458$].

5-[1-Hydroxy-1-(2-tert-butyldimethylsiloxy-3,4-dimethoxy-phenyl)methyl]-1-methyl-2-phenylthio-1 H -imidazole (20)

A solution of n-BuLi in n-hexane ($1.6 \mathrm{M} ; 12.7 \mathrm{~mL}, 20.3 \mathrm{mmol}$) was added dropwise to a solution of 2,2,6,6-tetramethylpiperidine ($3.8 \mathrm{~mL}, 22.3 \mathrm{mmol}$) in THF (50 mL) under an N_{2} atmosphere at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . A solution of $11(3.86 \mathrm{~g}, 20.3 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ was added
dropwise to the mixture, and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. A solution of 2-tert-butyldimethylsiloxy-3,4-dimethoxybenzaldehyde $19^{8}(6.02 \mathrm{~g}, 20.3 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ was added dropwise to the mixture and the whole was stirred at the same temperature for 2 h . Water (20 mL) was added, and the mixture was extracted with $\mathrm{AcOEt}(50 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate and evaporated to give a crystalline mass, which was purified by column chromatography (AcOEt- n-hexane $=1: 1$) on silica gel followed by recrystallization from n-hexane-AcOEt to afford 20 (7.70 g , 78%), mp 122.3-122.5 ${ }^{\circ} \mathrm{C}$ (colorless needles); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3150$, 2928, 1597, 1455, 1277, 1098, $834 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.09(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right), 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.88\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.63$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.09 ($\mathrm{s}, 1 \mathrm{H}, \operatorname{ArCH}(\mathrm{OH}) \mathrm{Im}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.69$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Im}-\mathrm{H}$), 7.01 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.12-7.26$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.5,-4.3,18.6,25.9,31.8,55.9,60.4$, $63.1,105.2,122.2,124.9,126.5,128.0,129.2,129.5,134.8$ 136.7, 139.0, 139.4, 146.5, 153.4 [Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}$ SSi: C, 61.69; H, 7.04; N, 5.76. Found; C, 61.45; H, 7.07; N, 5.99\%. HRMS m / z Calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}$ SSi: $M, 486.2008$. Found: M^{+}, 486.2015]

5-[1-(2-tert-Butyldimethylsiloxy-3,4-dimethoxyphenyl)methyl]-1-methyl-2-phenylthio-1 H -imidazole (21)

To a solution of $\mathbf{2 0}(2.0 \mathrm{~g}, 4.1 \mathrm{mmol})$ in 12 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added a solution of triethylsilane ($3.3 \mathrm{ml}, 20.5 \mathrm{mmol}$) and a solution of TFA ($1.9 \mathrm{ml}, 24.6 \mathrm{mmol}$). The solution was stirred for 12 h at rt under N_{2} and quenched by the addition of saturated aqueous NaHCO_{3} solution (15 ml). The mixture was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt- n hexane $=1: 2$) on silica gel to give $21(1.90 \mathrm{~g}, 98 \%)$ as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2916,1457,1098,834$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.21\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.97\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.55(\mathrm{~d}$, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-\mathrm{H}), 7.10-7.26(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.2,18.7,25.4,26.0,31.1,55.8,60.3,105.0$, 121.4, 123.5, 126.3, 127.6, 129.1, 129.2, 134.3, 135.4, 137.2, 139.8, 147.1, 152.4 [HRMS m/z Calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ M, 470.2059. Found: M^{+}, 470.2050]

4-Bromo-5-[1-(2-tert-butyldimethylsiloxy-3,4-dimethoxy-phenyl)methyl]-1-methyl-2-phenylthio- \mathbf{H}-imidazole (22)

NBS ($182 \mathrm{mg}, 1.02 \mathrm{mmol}$) was added to a solution of 21 ($482 \mathrm{mg}, 1.02 \mathrm{mmol}$) in THF (4 ml) under an N_{2} atmosphere at $0^{\circ} \mathrm{C}$, and the whole was stirred for 1 h at $0^{\circ} \mathrm{C}$. Then water $(1 \mathrm{ml})$ was added, and the mixture was extracted with AcOEt The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography (AcOEt- n-hexane $=1: 2$) on silica gel to afford $22(454 \mathrm{mg}, 81 \%), \mathrm{mp} 86.6-88.4^{\circ} \mathrm{C}$ (colorless crystals, recrystallized from n-hexane-AcOEt); $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 2915,1599,1457,1253,1098,834 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.25\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.03\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.36(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.1$, $18.8,24.3,26.1,32.0,55.8,60.3,105.2,116.1,120.8,122.4$, $126.8,128.0,129.3,132.1,134.4,137.1,139.8,146.9,152.4$ [Calc. For $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SSi}$: C, 54.63 ; H, 6.05; N, 5.10. Found C, $54.41 ; \mathrm{H}, 5.99 ; \mathrm{N}, 5.19 \%$. MS m / z (\% base): 551 (3), 550 (7), 549 (2), 548 (6), 496 (2), 495 (12), 494 (28), 493 (100), 492 (26), 491 (92), 478 (18), 476 (15), 397 (15), 209 (27), 199 (24). HRMS m / z Calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SSi}: M$, 548.1164. Found: M^{+}, 548.1177]

5-[1-(2-tert-Butyldimethylsiloxy-3,4-dimethoxyphenyl)methyl]-4-[1-hydroxy-1-(4-methoxyphenyl)methyl]-1-methyl-2-phenyl-thio- 1 H -imidazole (23)
[Method A]. A solution of tert-BuLi in n-pentane (1.56 M ; $0.17 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added dropwise to a solution of 22 ($72 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (1.0 mL) under an N_{2} atmosphere at $-78{ }^{\circ} \mathrm{C}$. Stirring was continued for 1 h , then a solution of p-anisaldehyde ($0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. Stirring was continued for 3 h at $-78{ }^{\circ} \mathrm{C}$, then water (2 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography $(\mathrm{AcOEt}-n$-hexane $=1: 2)$ on silica gel to give $\mathbf{2 3}(12 \mathrm{mg}$, 15%) as a pale yellow viscous material.
[Method B]. A solution of tert-BuLi in n-pentane (1.56 M ; $0.23 \mathrm{~mL}, 0.36 \mathrm{mmol}$) was added dropwise to a mixed solution of $22(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ and p-anisaldehyde $(0.11 \mathrm{~mL}, 0.91$ mmol) in THF (1.5 mL) under an N_{2} atmosphere at $-78^{\circ} \mathrm{C}$. Stirring was continued at $-78^{\circ} \mathrm{C}$ and a solution of tert-BuLi in n-pentane [$1.56 \mathrm{M} ; 0.46 \mathrm{~mL}(0.23 \mathrm{~mL} \times 2), 0.72 \mathrm{mmol}]$ was added to the reaction mixture every 15 min until TLC of the reaction mixture indicated disappearance of the starting compound 22. After stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$, water $(1 \mathrm{~mL})$ was added to the mixture. The mixture was extracted with AcOEt , and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography (AcOEt- n-hexane $=1: 2$) on silica gel to give $\mathbf{2 3}(98 \mathrm{mg}, 89 \%)$ as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3400,2916,1602$, 1457, 1246, 1098, $834 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.197\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, 0.203 (s, 3H, SiCH_{3}), $0.98\left[\mathrm{~s}, 9 \mathrm{H}, \operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.29(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 3.61 (br s, $1 \mathrm{H}, \mathrm{OH}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.75(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{ArCH} \mathrm{I}_{2} \mathrm{Im}$), 3.76 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.79 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 5.73 (d, $1 \mathrm{H}, J=3.7 \mathrm{~Hz}, \mathrm{ArCH}(\mathrm{OH}) \mathrm{Im}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 6.32 (d, 1H, $J=8.6 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.79$ (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.10-7.35 (m, 7H, $\operatorname{Ar}-H) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.2,18.7,24.0,26.1$, 31.1, 55.2, 55.8, $60.3,69.7,104.9,113.6,121.4,122.3,126.4$, 127.4, 127.9, 127.9, 129.2, 135.1, 135.6, 136.0, 139.7, 142.8, 146.8, 152.2, 158.9 [HRMS m/z Calc. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}: M$, 606.2583. Found: $\left.\mathrm{M}^{+}, 606.2591\right]$.

8-(tert-Butyldimethylsilyloxy)-6,7-dimethoxy-4-(4-methoxy-phenyl)-1-methyl-2-phenylthio-4,9-dihydro-1 H-naphtho[2,3- d]imidazole (26)

To a solution of $23(54 \mathrm{mg}, 0.09 \mathrm{mmol})$ in 1.5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added a solution of triethylsilane ($0.02 \mathrm{~mL}, 0.13 \mathrm{mmol}$) and a solution of TFA ($0.02 \mathrm{~mL}, 0.27 \mathrm{mmol}$). The solution was stirred for 12 h at rt under N_{2} and quenched by the addition of saturated aqueous NaHCO_{3} solution (2 ml). The mixture was extracted with $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt-nhexane $=1: 1$) on silica gel to give $26(41 \mathrm{mg}, 79 \%)$ as colorless crystals; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2917,1603,1490,1246,1126,834 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.07[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $\left.3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.746(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 3.752(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.754\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}$, $\mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Im}$), 3.87 (d, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{Im}$), 5.22 (t, $1 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{ArCH}(\mathrm{Ar}) \mathrm{Im}), 6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.78(\mathrm{~d}, 2 \mathrm{H}$, $J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.02-7.22(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ [HRMS m / z Calc. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}: M, 588.2478$. Found: $\left.\mathrm{M}^{+}, 588.2470\right]$.

5-[1-(2-tert-Butyldimethylsiloxy-3,4-dimethoxyphenyl)methyl]-4-[1-(4-methoxyphenyl)methyl]-1-methyl- $\mathbf{1 H}$-imidazole (25)

Sodium borohydride ($1.08 \mathrm{~g}, 28.51 \mathrm{mmol}$) was added to a solution of 23 ($412 \mathrm{mg}, 0.68 \mathrm{mmol}$) and nickel(II) chloride
hexahydrate $(2.26 \mathrm{~g}, 9.51 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{THF}=1: 1(20 \mathrm{~mL})$ under an N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$, and the whole was refluxed for 2 h . The solvent was evaporated off, then water (20 mL) was added to the residue. The mixture was extracted with CHCl_{3}. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}=20: 1)$ on silica gel to give $25(202 \mathrm{mg}, 62 \%)$ as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 2918, 1601, 1457, 1241, $1099,834 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.25\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.03[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$] , $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 3.84$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{Im}$), $6.21(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.36(\mathrm{~d}, 1 \mathrm{H}$, $J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.1$, 18.8, 23.0, 26.1, 31.4, 33.0, 55.2, 55.8, 60.3, 104.8, 113.7, 122.5 , 122.7, 125.1, 129.5, 133.0, 136.6, 139.2, 146.8, 152.1, 157.7 [HRMS m / z Calc. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: M, 482.2601$. Found: M^{+}, 482.2592].

2-Bromo-5-[1-(2-tert-butyldimethylsiloxy-3,4-dimethoxyphenyl)-methyl]-4-[1-(4-methoxyphenyl)methyl]-1-methyl-1 H -imidazole (29)

NBS ($9 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to a solution of $\mathbf{2 5}(25 \mathrm{mg}$, $0.05 \mathrm{mmol})$ in THF (0.5 ml) under an N_{2} atmosphere at $0^{\circ} \mathrm{C}$, and then the whole was stirred for 1 h at $0^{\circ} \mathrm{C}$. Then water $(0.5 \mathrm{ml})$ was added, and the mixture was extracted with AcOEt . The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography ($\mathrm{AcOEt}-n$-hexane $=1: 2$) on silica gel to give 29 ($17 \mathrm{mg}, 59 \%$) as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2917,1602,1460,1244,1098,834 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.24\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.02\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.27$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right.$), $3.810\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right)$, $3.813\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 6.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.6 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.1$, 18.8, 23.9, 26.1, 32.0, 33.0, 55.2, 55.8, 60.3, 104.9, 113.7, 118.3, $121.9,122.5,128.3,129.5,132.5,139.7,139.8,146.8,152.2$, 157.8 [MS m / z (\% base): 562 (2), 560 (2), 507 (2), 506 (8), 505 (28), 504 (8), 503 (26), 383 (10), 381 (10), 279 (6), 209 (6), 121 (100). HRMS m/z Calc. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}: M, 560.1705$ Found: $\left.\mathrm{M}^{+}, 560.1714\right]$

2-Azido-5-[1-(2-tert-butyldimethylsiloxy-3,4-dimethoxyphenyl)-methyl]-4-[1-(4-methoxyphenyl)methyl]-1-methyl-1 H -imidazole (30)

A solution of tert-BuLi in n-pentane $(1.56 \mathrm{M} ; 0.43 \mathrm{~mL}$, $0.66 \mathrm{mmol})$ was added dropwise to a solution of $29(124 \mathrm{mg}$, 0.22 mmol) under an N_{2} atmosphere at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then trisyl azide (205 mg , 0.66 mmol) was added, and then the whole was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Water (1 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography $(\operatorname{AcOEt}-n$-hexane $=1: 3)$ on silica gel to give $30(90 \mathrm{mg}$, 78%) as a pale yellow viscous material; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2916,2120$, 1601, 1499, 1245, 1098, $834 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.23[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.01\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.07$ (s, 3H, NCH ${ }_{3}$), 3.746 (s, $3 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{3}$), $3.753\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 6.37$ (d, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; \delta\left(\mathrm{CDCl}_{3}\right)-4.1,18.8$, 23.3, 26.1, 29.2, 32.7, 55.2, 55.8, 60.3, 104.9, 113.7, 122.4, 122.5, $124.5,129.4,132.7,136.5,138.9,139.7,146.8,152.1,157.8$ [HRMS m / z Calc. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}: M, 523.2614$. Found: M^{+}, 523.2612].

2-Azido-5-[1-(2-hydroxy-3,4-dimethoxyphenyl)methyl]-4-
[1-(4-methoxyphenyl)methyl]-1-methyl-1 H -imidazole (31)
A solution of TBAF in THF ($1 \mathrm{M} ; 1.00 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added dropwise to a solution of $30(476 \mathrm{mg}, 0.91 \mathrm{mmol})$ in THF (5 mL) at room temperature. The mixture was stirred for 5 min at room temperature. Water (2 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=50: 1\right)$ on silica gel to give 31, yellow crystals ($322 \mathrm{mg}, 87 \%$), mp $140{ }^{\circ} \mathrm{C}$ dec. (recrystallized from $\mathrm{CHCl}_{3}-n$-hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3475,2924,2121,1607,1500$, 1458, 1240, 1169, $1093 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArCH} \mathrm{I}_{2} \mathrm{Im}\right), 3.816(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.823\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right.$), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.31(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.78(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$; $\delta\left(\mathrm{CDCl}_{3}\right) 22.4,29.3,32.6,55.2,55.8,60.9,103.5,113.7,117.1$, $123.3,124.4,129.4,132.8,135.2,136.2,138.8,146.9,150.9$, 157.8 [HRMS m / z Calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}: M, 409.1750$. Found: $\left.\mathrm{M}^{+}, 409.1749\right]$.

Naamine $\mathbf{C} 2$

A mixture of $31(52 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ was stirred for 24 h under an H_{2} atmosphere at room temperature. The catalyst was removed by filtration with CHCl_{3} and the filtrate was evaporated to give an oily residue. The crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=5: 1\right)$ on silica gel to give 2 as a yellow powder ${ }^{1 f, 10}(47 \mathrm{mg}, 97 \%)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3251,3107,2932,1660$, 1608, 1504, 1458, 1236, $1093 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.25(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 3.736 (br s, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}$), 3.742 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.75 (br s, $2 \mathrm{H}, \mathrm{ArCH} \mathrm{I}_{2} \mathrm{Im}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right.$), $6.35(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 6.77 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$; $\delta\left(\mathrm{CDCl}_{3}\right) 22.1,29.7,29.9,55.2,55.8,61.0,103.7,114.0,115.9$, 120.9, 123.3, 124.7, 129.5, 130.1, 135.5, 146.7, 147.2, 151.3, 158.2 [HRMS m / z Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}: M, 383.1845$. Found: $\left.\mathrm{M}^{+}, 383.1843\right]$.

Pyronaamidine 4

A solution of 1-methylparabanic acid $32(30 \mathrm{mg}, 0.24 \mathrm{mmol})$ and N, N-diisopropylethylamine ($0.11 \mathrm{~mL}, 0.61 \mathrm{mmol}$) and trimethylsilyl chloride ($0.06 \mathrm{~mL}, 0.49 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was stirred for 5 min under an N_{2} atmosphere at $0^{\circ} \mathrm{C}$, and then the stirring was continued for 2 h at room temperature. A solution of naamine C $2(90 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added to the mixture, the whole was refluxed for 48 h . The solution was evaporated to give an oily residue, which was purified by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=5: 1\right)$ on silica gel to afford 4, yellow crystals ($32 \mathrm{mg}, 28 \%$), mp $182.3-184.5{ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CHCl}_{3}-n$-hexane; lit. ${ }^{1 e, 12}$ $\left.\mathrm{mp} 185-187^{\circ} \mathrm{C}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3476,2977,1783,1732,1659$, 1609, 1563, 1504, 1457, 1388, 1297, 1240, 1172, 1144, 1094, $1031 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.54(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), 3.88 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}$), $3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Im}\right), 6.35$ (d, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.79$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.10 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$); $\delta\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 23.2,24.7,30.0,32.2,55.5,56.1,61.2,104.0,114.1$, 116.4, 123.7, 126.9, 129.7, 131.9, 135.2, 135.8, 146.5, 146.8, 147.5, 151.6, 156.4, 158.5, 162.7 [Calc. For $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{1 / 1 / 2} \mathrm{H}_{2} \mathrm{O}$: C, 59.75 ; H, 5.62 ; N, 13.94. Found: C, 59.56 ; H, 5.53 ; N, 13.81%. HRMS m / z Calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{6}: M, 493.1961$. Found: $\left.\mathrm{M}^{+}, 493.1974\right]$.

Acknowledgements

This research was financially supported, in part, by a Grant-In-Aid for the promotion of the advancement of education and
research in graduate schools in Subsidies for ordinary expenses of private schools from the Promotion and Mutual Aid Corporation for Private Schools, and the Frontier Research Program and a Grant-In-Aid for Encouragement of Young Scientists (to I. K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

1 (a) S. Carmely and Y. Kashman, Tetrahedron Lett., 1987, 28, 3003; (b) S. Carmely, M. Ilan and Y. Kashman, Tetrahedron, 1989, 45, 2193; (c) B. R. Copp, C. R. Fairchild, L. Cornell, A. M. Casazza, S. Robinson and C. M. Ireland, J. Med. Chem., 1998, 41, 3909; (d) D. C. Dunbar, J. M. Rimoldi, A. M. Clark, M. Kelly and M. T. Hamann, Tetrahedron, 2000, 56, 8795; (e) R. K. Akee, T. R. Carroll, W. Y. Yoshida, P. J. Scheuer, T. J. Stout and J. Clardy, J. Org. Chem., 1990, 55, 1944; (f) X. Fu, J. R. Barnes, T. Do and F. J. Schmitz, J. Nat. Prod., 1997, 60, 497; (g) A. Plubrukarn, D. W. Smith, R. E. Cramer and B. S. Davidson, J. Nat. Prod., 1997, 60, 712; (h) X. Fu, F. J. Schmitz, R. S. Tanner and M. Kelly-Borges, J. Nat. Prod., 1998, 61, 384.
2 S. Ohta, N. Tsuno, S. Nakamura, N. Taguchi, M. Yamashita, I. Kawasaki and M. Fujieda, Heterocycles, 2000, 53, 1939.

3 I. Kawasaki, S. Nakamura, S. Yanagitani, A. Kakuno, M. Yamashita and S. Ohta, J. Chem. Soc., Perkin Trans. 1, 2001, 3095.

4 S. Ohta, N. Tsuno, K. Maeda, S. Nakamura, N. Taguchi, M. Yamashita and I. Kawasaki, Tetrahedron Lett., 2000, 41, 4623.
5 (a) I. Kawasaki, N. Taguchi, T. Yamamoto, M. Yamashita and S. Ohta, Tetrahedron Lett., 1995, 36, 8251; (b) I. Kawasaki, N. Taguchi,
M. Yamashita and S. Ohta, Chem. Pharm. Bull., 1997, 45, 1393; (c) S. Nakamura, N. Tsuno, M. Yamashita, I. Kawasaki, S. Ohta and Y. Ohishi, J. Chem. Soc., Perkin Trans. 1, 2001, 429.

6 T. G. Back, D. L. Baron and K. Yang, J. Org. Chem., 1993, 58, 2407.

7 N. Kawai, Y. Fujibayashi, S. Kuwabara, K. Takao, Y. Ijuin and S. Kobayashi, Tetrahedron, 2000, 56, 6467.

8 S. B. Singh and G. R. Pettit, J. Org. Chem., 1989, 54, 4105.
9 R. E. Harmon, G. Wellman and S. K. Gupta, J. Org. Chem., 1973, 38, 11 .
10 The reported physical data for the natural naamine C (ref. $1 f$): yellow powder; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ; \delta(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 22.6, 29.3, 29.6, 55.3, 55.8, 61.0, 103.8, 114.2, 115.1, $121.1,122.7,123.3,129.0,129.5,135.5,146.4,147.1,151.5,158.5$. IR was not reported in ref. $1 f$.
11 At this time N, N-diisopropylethylamine was used instead of $\mathrm{Et}_{3} \mathrm{~N}$ and imidazole, which were used in ref. 4. Although use of the latter bases resulted in low yield of 4 (10% yield), use of the former base somewhat improved the yield of 4 (28% yield).
12 The reported physical data for the natural pyronaamidine (ref. 1e): $\mathrm{mp} 185-187{ }^{\circ} \mathrm{C}$ (yellow feathery crystals); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3403$ (br) 1790, 1732, 1664, 1613, 1567, 1510, 1444, 1392, 1302, 1246, 1178, 1148, 1096, 1034, 968, 752, $606 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3.09$ $(\mathrm{s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}$, $2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}), 6.44(\mathrm{~d}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 2 \mathrm{H}), 7.15$ (d, 2H), 8.14 (br s, 1H), 8.14 (br s, 1H); $\delta\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 23.2$, 24.7, 29.9, 32.1, 55.5, 56.0, 61.1, 104.0, 114.1, 116.4, 123.7, 126.9, 129.7, 131.9, 135.1, 135.8, 146.5, 146.7, 147.5, 151.7, 156.4, 158.5, 162.7.

[^0]: \dagger The IUPAC name for trisyl azide is azidotriphenylsilane.

